Dr. KUNISETTI V PRAVEEN KUMAR

kvpraveenkumar15@gmail.com, kvpraveenkumar@eed.svnit.ac.in

PRESENT ADDRESS

K. V. Praveen Kumar, Assistant Professor, Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007.

EXPERIENCE

Name of the Institution	Designation	Date of Joining	Date of Relieving
Gayatri Vidya Parishad College of	Assistant	10/11/2018	05/09/2019
Engineering, Visakhapatnam, Andhra Pradesh	Professor		
Sardar Vallabhbhai National Institute of	Assistant	30/09/2019	
Technology, Surat	Professor		

EDUCATION

Name of	Years A	ttended	Qualification	alification Class of		Course of	
the Institution	From	То	Obtained	Honor	Percentage	Study	
National Institute of Technology Warangal	17/07/2015	18/04/2019	PhD	-NA-	-NA-	Power Electronics and Drive	

SPONSORED PROJECTS

Project Title	Sponsoring Agency	Grant Received (INR)	Duration	Status
Development of enhanced Predictive Current Control and Predictive Torque Control strategies for Open-end Winding Permanent Magnet Synchronous Motor drive with less torque ripple for Electric Vehicles	Science and Engineering Research Board (SERB)	28,96,910.00	02 Years	On- going
Simplified Predictive Torque Control Strategies for an Induction Motor Drive	Sardar Vallabhbhai National Institute of Technology, Surat (SEED Money)	10,00,000.00	02 Years	On- going

ACADEMIC PROJECTS

Research Interests

Power Electronics, Multi-level Inverters, DTC for AC motor Drives, Model Predictive Control for AC motor Drives (including Special Machines).

Doctor of Philosophy

Title: Investigation of Direct Torque Control and Predictive Torque Control Strategies to an Openend Winding Induction Motor Drive.

The doctoral thesis introduces effective voltage switching state algorithms for a direct torque controlled OEWIM drive to reduce torque and flux ripples with three and four-level inversion schemes. The switching state algorithms are implemented by considering operating speed of OEWIM drive. The proposed algorithms do not increase complexity. The developed DTC strategies maintain lesser ripple in torque, flux and less CMV. The limitation of classical PTC is variable switching frequency. In this thesis, an attempt is made to reduce switching frequency, torque and flux ripples by using multi-level inverter fed OEWIM configuration. This thesis describes the implementation of predictive torque controlled OEWIM with four-level inversion. To simplify the tuning of weighting factors, in this thesis, normalized weighted sum model is introduced to optimize the cost function. Another PTC strategy introduced to an OEWIM drive, to eliminate weighting factors. This uses two cost function is to reduce the flux ripple and the other cost function is to reduce the torque ripple.

S. No	Author(s)	Title of Article	Name of Journal	Vol. No. Year and Page Number	Impact Factor
1.	Kasoju Bharath kumar & Kunisetti V Praveen Kumar	Simple predictive torque control of an open-end winding interior permanent magnet synchronous motor drive without weighting factor for electric vehicle applications	International Journal of Circuit Theory and Applications, Wiley	Accepted for Publication, 2023	2.3
2.	Kunisetti V Praveen Kumar & Vinay Kumar T	Enhanced Weighting Factor Eliminated Predictive Torque Control of an Open End Winding Induction Motor Drive	Electric Power Components and systems, Taylor & Francis	Vol. 50, Issue 7, pp. 318-330, 2022	1.5
3.	Kunisetti V Praveen Kumar & Vinay Kumar T	Enhanced predictive torque control of multi-level inverter fed open- endwinding induction motor drive based on predictive angle control	European Power Electronics and Drives, Taylor & Francis	Accepted for Publication onFeb 19, 2020	0.26
4.	Kunisetti V Praveen Kumar & Vinay Kumar T	Enhanced direct torque control and predictive torque control strategies of an open-End winding induction motordrive to eliminate common- mode voltage and weighting factors	IET Power Electronics	Vol. 12, Issue 8, pp.1986- 1997, 2019	2.67
5.	Kunisetti V Praveen Kumar & Vinay Kumar T	Improvised Predictive Torque Control Strategy for an Open End Winding Induction Motor Drive fedwith Four-Level Inversion using Normalized Weighted Sum Model	IET Power Electronics	Vol. 11, Issue 5, pp. 808- 816, 2018	2.67
6.	Kunisetti V Praveen Kumar & Vinay Kumar T	Predictive torque control of open- end winding induction motor drivefed with multilevel inversion usingtwo two-level inverters	IET Electric Power Applications	Vol. 12, Issue 1, pp. 54 - 62, 2018	2.83
7.	Kunisetti V Praveen Kumar & Vinay Kumar T	An effective four-level voltage switching state algorithm for direct torque controlled open end windinginduction motor drive by using twotwo-level inverters	Electric Power Components and systems, Taylor & Francis	Vol. 45, Issue 19, pp. 2175- 2187, 2017	1.5
8.	Kunisetti V Praveen Kumar , Ravi Eswar K M & Vinay Kumar T	Hardware implementation of Predictive Torque Controlled Open-end winding induction motor drive with self-tuning algorithm	Cogent Engineering, Taylor & Francis	Vol. 4, Issue 1, 2017	ESCI, 01
9.	Kunisetti V Praveen Kumar , Vinay Kumar T & S. Srinivasa rao	Analysis, design and implementation of direct torque controlled induction motor drivebased on slip angle	International Journal ofModeling and Simulation, Taylor & Francis	Vol. 37, Issue 4, pp. 208-219, 2017	ESCI, SCOPUS, EBSCO
10.	Kunisetti V Praveen Kumar & Vinay Kumar T	An Enhanced Three-Level Voltage Switching State Scheme for Direct Torque Controlled Open End Winding Induction Motor	Journal of The Institutionof Engineers (India): Series B, Springer	Vol. 99, Issue 3, pp. 235-243, 2018	National Journal, Scopus,EBSCO Indexed, 01
11.	Ravi Eswar K M, Kunisetti V Praveen Kumar & Vinay Kumar T	Enhanced Predictive Torque Control with Auto-Tuning Featurefor Induction Motor Drive	Electric Power Components and systems, Taylor & Francis	Vol. 46, Issue 7, pp.825 - 836, 2018	1.5
12.	Ravi Eswar K M, Kunisetti V Praveen Kumar & Vinay Kumar T	A Simplified Predictive Torque Control Scheme for Open End Winding Induction Motor Drive	IEEE Journal of Emerging and Selected Topics in Power Electronics	Vol. 7, Issue 2, pp.1162-1172, 2019	4.72
13.	Ravi Eswar K M, Kunisetti V Praveen Kumar & Vinay Kumar T	Enhanced Predictive Torque Control for Open End WindingInduction Motor Drive withoutWeighting Factor Assignment	IEEE Transactions on Power Electronics	Vol. 34, Issue 1, pp.503 - 513, 2019	6.8
14.	Ravi Eswar K M, Kunisetti V Praveen Kumar & Vinay Kumar T	Modified Predictive Torque andFlux Control for Open End Winding Induction Motor Drivebased on Ranking Method	IET Electric Power Applications	Vol. 12, Issue 4, pp.463 - 473, 2018	2.83

DETAILS OF ARTICLES PUBLISHED IN JOURNALS:

S. No Author(s)		Title of the Paper	Name of	Name of	Year
			Conference	Publisher	1000
1.	Kasoju Bharath Kumar & Kunisetti V. Praveen Kumar	An Improved Predictive Current Control Technique for Open-End Winding Interior Permanent Magnet Synchronous Motor Drive with reduced Ripples for EVs	2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)	IEEE	2022
2.	Ankita Sharma, Rajasekharareddy Chilipi & Kunisetti V. Praveen Kumar	Control of Modular Multilevel Converter-based Power Electronic Transformer for Grid Integration of Solar PV System	2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)	IEEE	2022
3.	Kasoju Bharath Kumar & Kunisetti V. Praveen Kumar	An Effective Predictive Torque Control Technique for Open-end Winding Permanent Magnet Synchronous Motor Drives with Reduced Ripples for EVs	2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)	IEEE	2022
4.	Ankita Sharma, Rajasekharareddy Chilipi & Kunisetti V. Praveen Kumar	Model Predictive Control of MMC- based Medium Voltage Microgrid for Grid Connected and Islanded Operation	2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)	IEEE	2022
5.	Ankita Sharma, Rajasekharareddy Chilipi & Kunisetti V. Praveen Kumar	Indirect model predictive control of grid connected modular multilevel converter	2021 National Power Electronics Conference (NPEC)	IEEE	2021
6.	K V Praveen Kumar and T Vinay Kumar	Space Vector Modulated Direct Torque Control of an Open-end Winding Induction Motor Drive with Three-Level Inversion	IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society	IEEE	2021
7.	Kunisetti V. Praveen Kumar	Selective Voltage Vector Based Predictive Torque Control of an Open-end Winding Induction Motor Drive with Four-Level Inversion for EV's	IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society	IEEE	2021
8.	K V Praveen Kumar and T Vinay Kumar	Predictive Torque Control Strategyof an Open-End Winding InductionMotor Drive with Less Common- Mode Voltage	ICIT - IEEE 2018, Lyon, France	IEEE	20-22 Feb, 2018,
9.	K V Praveen Kumar and T Vinay Kumar	Improvised Direct Torque ControlStrategies of Open End Winding PMSM Fed with Multi- Level Inversion	ICIT- IEEE 2018, Lyon, France	IEEE	20-22 Feb, 2018
10.	K V Praveen Kumar and T Vinay Kumar	Experimental implementation ofdirect torque control of open end winding induction motor	Region 10 Conference (TENCON), 2016 IEEE Singapore	IEEE	22-25 Nov. 2016, Citations: 9
11.	K V Praveen Kumar and T Vinay Kumar	Direct torque control of brush lessDC motor drive with modified switching algorithm	IEEE-PEDES-2016	IEEE	14-17 Dec. 2016
12.	Niraj Muley, Akshay Chabukswar, Rintu Sarkar, K V Praveen Kumar , T Vinay Kumar	Reduction of torque and flux ripplesin Direct Torque controlled five- phase induction motor drive based on instantaneous voltage control technique	IEEE-PEDES-2016	IEEE	14-17 Dec. 2016

DETAILS OF ARTICLES PUBLISHED IN CONFERENCES:

Workshops/ STTP's Organised:

	Title	Organized at	Organized by	From Date	To Date	Duration
	Control of Power Electronic Converters for on grid and off grid systems	Sardar Vallabhbhai National Institute of Technology, Surat	Dr. K. V. Praveen Kumar, Dr. Sabha Raj Arya, Dr. Mahesh Aeidapu, Dr. J. Venkataramanaiah and Dr. Sushnigdha G	03/08/2020	07/08/2020	05 Days
	Power Electronic Converters and Drives: Fundamentals, Implementation and Applications (PECD)	Sardar Vallabhbhai National Institute of Technology, Surat	Dr. K. V. Praveen Kumar, Dr. M. A. Mulla, and Dr. J. Venkataramanaiah	03/10/2020	07/10/2020	05 Days
	Advancement in Electric Vehicle Technology: A step towards Development of sustainable Transportation System	Sardar Vallabhbhai National Institute of Technology, Surat	Dr. K. V. Praveen Kumar, Dr. V. A. Shah, Dr. Sabha Raj Arya and Dr. C. P. Gor	18/02/2021	22/02/2021	05 Days
	EV Charging Technology and Infrastructure Development	Sardar Vallabhbhai National Institute of Technology, Surat	Dr. K. V. Praveen Kumar, Dr. V. A. Shah, Dr. C. P. Gor and Dr. Sukanta Halder	30/03/2023	03/04/2023	05 Days
]	Responsibilities at I	nstitute Level	<u>l:</u>			
	Positio	on		From Date		To Date
	Warden (Gajja	ar Bhavan)		13/03/2021	3	Fill Date
	Member, Central Hostel I	Dicinlinary Committee	4	03/05/2023		Till Date

Co-Chairman, Hostel Information Brochure Committee 21/06/2023

Member, Hostel Allotment Committee

Member, Hostel Purchase Committee 24/04/2023 Co-Chairman (Drishti-The Innovation Club) 09/10/2021 Member- Institute Mechanical Maintenance Committee 06/06/2020 06/06/2022

Member- NIRF Committee

2020, 2021, 2022

21/06/2023

Till Date

Till Date

Till Date

Till Date

*The above mentioned duties are of duration for more than 06 months. In addition to the above, the other responsibilities at the institute level has been carried out from time to time.

Responsibilities at Department Level:

Position	From Date	To Date
Co-Chairman (Department Time Table Committee)	09/05/2022	Till Date
Lab In-Charge (MFRD Lab)	03/03/2020	Till Date
Lab In-Charge (Electric Vehicles Lab)	03/09/2021	Till Date
Lab In-Charge (UG Project Lab)	03/09/2021	Till Date
Lab In-Charge (Instrumentation Lab)	03/09/2021	Till Date

*The above mentioned duties are of duration for more than 06 months. In addition to the above, the other responsibilities at the department level has been carried out from time to time.

Subjects Taught:

UG Level	PG Level	
Electrical Networks		
Electrical and Electronic Measurements		
Electrical circuits	Electrical Drives (Partial)	
Electromagnetic Field Theory		
Basics of Electrical Engineering		
Instrumentation		
Electronic Instrumentation	Modern Instrumentation (Partial)	
Electrical Technology		

(K. V. Praveen Kumar)